Faceți căutări pe acest blog

joi, 10 septembrie 2020

Suma numerelor întregi din intervalul (-2;2] este egală cu...


Suma numerelor întregi din intervalul (-2;2] este egală cu...

Pentru a putea rezolva această problemă, elevul trebuie să știe ce este un interval, ce înseamnă numere întregi și ce înseamnă sumă. Începem să povestim despre intervale. Noțiunea de interval (gândește-te și la „inter-val”, între valuri) se referă la toate numerele reale posibile aflate între două numere. Având în vedere faptul că între 7 și 8 există și 7,2 și 7,3 și 7,35 și așa mai departe, rezultă că există o infinitate de numere reale între 7 și 8, așa că nu le putem scrie pe toate. Tocmai de aceea s-a inventat noțiunea de „interval”. Ea ne ajută să ne putem referi la toate numerele dintre 7 și 8 printr-o metodă simplă: scriem doar (7;8) și înțelegem că ne referim la toate numerele dintre 7 și 8. Mai mult de atât, dacă jonglăm și cu parantezele pe care le folosim pentru interval putem să spunem și dacă numerele 7 și 8 se află sau nu se află în intervalul nostru. Astfel, dacă folosim numai paranteze rotunde, spunem prin aceasta că numerele 7 și 8 NU se află în intervalul (7;8), dar în acest interval se află orice număr apropiat de 7 și de 8, aflat în dreapta lui 7 și în stânga lui 8. Deci, intervalul (7;8) conține și numerele 7,1 și 7,01 și 7,0001, dar NU îl conține pe 7. În schimb, dacă dorim să-l includem și pe 7 în intervalul nostru, atunci ne folosim de paranteza dreaptă. Așadar, intervalul [7;8) îl conține și pe 7, conține toate numerele dintre 7 și 8, dar nu îl conține pe 8. Mai observați că în partea din stânga intervalului am așezat numărul mai mic, iar în partea din dreapta am așezat numărul mai mare; aceasta este o regulă obligatorie și firească. Cu aceasta consider că sunteți bine puși la punct cu noțiunea de „interval”.

Acum pentru a rezolva problema noastră, mai trebuie să facem o trecere în revistă a numerelor întregi. Numerele întregi sunt cele care nu au virgulă. Nu e o problemă că au minus, important este să nu aibă virgulă, să nu fie fracționare, să fie întregi. De exemplu, numărul 7 este număr întreg (el este și natural), numărul -3 este număr întreg (dar nu este natural), în schimb, numărul 2,8 nu mai este număr întreg, ci este așa-numitul „număr rațional”. Așadar, care sunt numerele întregi din intervalul (-2;2]? Deoarece în dreptul lui -2 este paranteză rotundă, înseamnă că pe -2 nu îl vom lua în considerare, chiar dacă este număr întreg. Deci, primul număr întreg ce se află în intervalul nostru este abia -1 și cu el vom începe calculul sumei cerute. Următorul este 0, apoi 1 și nu ne oprim aici, deoarece în dreptul lui 2 este paranteză dreaptă, deci trebuie să-l luăm în considerare. Astfel, calculul nostru devine: (-1)+0+1+2=2.

Răspuns final: 2.

Dar ce ne făceam dacă ni se cerea suma numerelor întregi din intervalul (-100;100]? Oare trebuia să le adunăm pe rând pe toate numerele întregi din interval și să ne trezim că am pierdut minute bune cu calculul? Desigur, nu. De ce? Deoarece, orice număr natural din intervalul nostru, cu excepția lui 100, are un corespondent opus în interval. De exemplu, numărul 98 are în interval și opusul -98 și noi știm că suma a două numere opuse este nulă, este zero, deci nu contribuie la modificarea sumei finale, sumă care va fi în cazul acesta egală tocmai cu numărul care nu are un opus în interval, deci 100.


Niciun comentariu:

Trimiteți un comentariu

Exprimați-vă părerea despre articol sau cereți lămuriri suplimentare, ca să transmitem cât mai multă informație celor care au nevoie de ea.

Comentariul va apărea după un anumit interval de timp necesar moderării.

Legături la toate articolele din blog



Postări populare