Faceți căutări pe acest blog

vineri, 31 octombrie 2014

Cum e cu schimbarea de variabilă


Știm cu toții că una dintre cele mai simple integrale este, așa cum rezultă din tabele,
$$\int e^x dx=e^x.$$

În acest articol vom discuta despre schimbarea de variabilă, din $x$ în $u$. Cu această ocazie ne putem întreba cât ar fi
$$\int e^u du.$$

Observați că singurul lucru pe care l-am schimbat în expresia integralei $\int e^x dx=e^x$ a fost litera $x$, pe care am schimbat-o cu litera $u$. Atunci, și rezultatul va fi tot ceva în care vom schimba doar litera. Mai exact, avem și
$$\int e^u du=e^u.$$

Și, desigur, am putea schimba litera cu orice altă literă, că tot un astfel de rezultat am obține:
$$\int e^y dy=e^y,$$
$$\int e^v dv=e^v,$$
$$\int e^s ds=e^s.$$

Și-atunci, la ce mai e bună schimbarea literei? Tocmai, schimbarea literei nu ne ajută deloc. Căci simpla schimbare a literei nu este echivalentă cu schimbarea de variabilă propriu-zisă. Pentru a schimba variabila trebuie să facem ceva mult mai profund decât o simplă schimbare de literă.



Șmecheria schimbării de variabilă este dată de diferențiala care apare sub integrală. Veți înțelege de-acum de ce se tot pune câte-un $dx$ la fiecare integrală. Veți înțelege cât de mult contează această diferențială.

Deci, nu este totuna
$$\int e^x dx$$
cu
$$\int e^u d\color{red}{x}.$$



Să vă dau un exemplu. Știți că $\int e^x dx=e^x$. De asemenea, știți că $\int e^u du=e^u$, oricât ar fi $u$. Haideți să punem în locul lui $u$ tocmai $2x$, să vedem ce iese. Am avea atunci că
$$\int e^u du=\int e^{2x}d{\color{red}{(2x)}}=e^{2x}=e^u.$$
Rezultat corect. Așadar
$$\int e^{2x}d{\color{red}{(2x)}}=e^{2x}.$$

Dar să presupunem că noi vrem acum să știm cât este
$$\int e^{2x}d{\color{red}{x}}.$$

Desigur, cele două vor fi diferite. Adică, vom avea că
$$\int e^{2x}d{\color{red}{(2x)}}\neq\int e^{2x}d{\color{red}{x}}.$$

Ele nu diferă foarte mult în acest caz, dar totuși diferă, iar asta este important. Anticipând puțin am să vă arăt rezultatul:
$$\int e^{2x}dx=\frac{1}{2}e^{2x}.$$

Apare, deci, un $\frac{1}{2}$ suplimentar în fața rezultatului, în comparație cu
$$\int e^{2x}d(2x)=e^{2x}.$$

Deci, rețineți,
$$e^{2x}=\int e^{2x}d{\color{red}{(2x)}}\neq\int e^{2x}d{\color{red}{x}}=\frac{1}{2}e^{2x}.$$



Acum, cu acest exemplu ați văzut importanța diferențialei pentru rezultatul integralei. Dar să vedem lucruri și mai clare, cantitative. De unde am inventat eu acel $\frac{1}{2}$? Cum l-am găsit?

Pentru a găsi răspunsul, trebuie să găsim o legătură cantitativă între diferențiala lui $u$ (adică $du$) și diferențiala lui $x$ (adică $dx$). Există o legătură frumoasă între ele. În cuvinte, această legătură se exprimă în felul următor: derivata lui $u$ este tocmai raportul dintre diferențiala lui $u$ și diferențiala lui $x$.

Simbolic, avem
$$u^\prime=\frac{du}{dx}.$$
Această relație ne dă deja legătura mult dorită între cele două diferențiale. Mai exact, avem
$$\color{blue}{du=u^\prime dx}.$$

Sau, din această relație mai putem scrie și
$$\color{blue}{dx=\frac{du}{u^\prime}}.$$

Așa că acum avem atât posibilitatea de a folosi diferențiala $dx$, cât și posibilitatea de a folosi diferențiala $du$. Dar, e de preferat să folosim diferențiala $\color{limegreen}{dx}$ atunci când lângă funcția de integrat apare o expresie care ar putea fi considerată $u^\prime$ și e de preferat să folosim diferențiala $\color{magenta}{du}$ atunci când lângă funcția de integrat nu apare ceva interesant care ar putea fi considerat $u^\prime$.


Exemple. Exemplu de funcție lângă care nu apare $u^\prime$. Tocmai exemplul de mai sus, adică
$$\int e^{2x}dx.$$
Desigur, am vrea să avem ceva de genul $e^u$, deci îl vom lua pe $u$ ca fiind egal cu $2x$. Și $u^\prime=2$. Așadar, lângă funcția noastră, sub integrală nu apare $2$, deci e de preferat să folosim diferențiala $du$. Avem atunci
$$\int e^{2x}dx=\int e^{2x}\frac{du}{u^\prime}=\int e^u\frac{du}{2}=\frac{1}{2}\int e^udu=\frac{1}{2}e^u=\frac{1}{2}e^{2x}.$$
Acum ați văzut de unde am scos acel $\frac{1}{2}$ când am anticipat rezultatul acestei integrale.



Să vedem acum un alt exemplu, de data aceasta în care apare sub integrală ceva ce poate fi considerat $u^\prime$. Să se calculeze
$$\int 2x e^{x^2} dx.$$

Observăm imediat că în cazul nostru $u=x^2$ și, deci, $u^\prime=2x$. Așadar, integrala noastră va fi
$$\int 2x e^{x^2} dx=\int u^\prime e^u dx=\int e^u (u^\prime dx).$$ Și cum $u^\prime dx=du$, avem mai departe că
$$\int 2x e^{x^2} dx=\int e^u (u^\prime dx)=\int e^u du.$$
Și cum litera nu mai contează, așa cum am văzut la începutul articolului, avem că
$$\int e^u du=e^u.$$
Și cum la noi $u=x^2$, rezultă că integrala este în final
$$\int 2x e^{x^2} dx=\int e^u (u^\prime dx)=\int e^u du=e^{x^2}.$$


Mamăăăă, acuma văd ce mult am vorbit pentru a vă explica schimbarea de variabilă! Ce ineficient am fost! Oare nu se puteau spune toate aceste lucruri mult mai eficient? Ce părere aveți? Voi cum ați fi explicat altfel această lecție?